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Abstract

Tiling of crystals in magmatic rocks is used to indicate flow in the magmatic state and also as an indicator of shear sense. The status of

tiling as a kinematic indicator is often regarded with caution due to a poor understanding of the dynamics involved in its development. By

considering a simple numerical model involving both rotation and translation of pairs of crystal objects under different homogeneous steady

state flow conditions (i.e. 0%Wk%1.5), the dynamics of crystal tiling is studied in detail. A consistent relationship between tiling proportions

(i.e. dextral versus sinistral) and Wk is observed. For pure shear the relationship is 50/50 whereas for simple shear one sense dominates

accounting for 70% of the tiling. A similar relationship is observed for low and high crystal fractions and a wide variety of object aspect

ratios. Through application of the statistics of proportions it is shown that approximately 60 observations are required for a shear sense

determination, whereas for accurate estimation ofWk at least 200 observations are required. The density of tiling varies with crystal fraction

and it may be possible to use the frequency of occurrence of tiling to estimate the crystal fraction at the time of tiling. It is concluded that a

few observations of crystal tiling is a highly unreliable shear sense indicator.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Magmatic tiling has long been acknowledged as a useful

tool in the recognition of the occurrence of magmatic flow

within igneous rocks and more importantly as a kinematic

indicator for shear sense within magmatic state fabrics (Den

Tex, 1969; Blumenfeld and Bouchez, 1988). Tiling of

crystals involves the interaction of early-formed crystals in a

viscous magma due to movements in the magma (i.e. fluid

flow or deformation), which causes crystals to be rotated

and translated. It has been proposed that the sense of shear

of magmatic flow can then be determined from the dominant

sense of rotation of the crystal tilings (Blumenfeld and

Bouchez, 1988). Sense of tiling and synthetic versus

antithetic tiling are illustrated in Fig. 1. Flow in magma

can be conceptually subdivided into (1) a component due to
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magma ascent and emplacement (i.e. largely due to

buoyancy forces in the magma) referred to here as internal

flow and (2) a component due to tectonic movements of the

surrounding rock mass referred to here as external flow. In

general, a combination of internal and external flow is

present (see, for example, Correa-Gomes et al., 2001).

Distinguishing whether flow is dominantly of internal or

external origin is of utmost importance when investigating

the geological history of an igneous body.

Magmatic state fabrics such as tiling occur before the

RCMP (rheological critical melt percentage; Arzi, 1978) of

a magma is reached, i.e. a point where a magma transforms

from a liquid (Newtonian behaviour) to a solid (non-

Newtonian behaviour). This transition corresponds to 20–

40% melt in granitoid magmatic systems (Arzi, 1978).

Therefore, as the population density of crystals (i.e. crystal

fraction) increases the likelihood of mechanical interaction

between free moving crystals also increases with progress-

ive crystallisation during dynamic magmatic flow. How-

ever, this does not preclude interaction and the occurrence
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Fig. 1. Diagram of dextral and sinistral tiling and the notion of synthetic and

antithetic tiling.
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of magmatic tiling at an even earlier stage with a lower

crystal fraction in the melt. Work by Bryon et al. (1994) on

textural development during crystallisation of granitoid

magmas found that at z50% melt a crystal framework

would develop with subsequent crystallisation in pore

spaces. This would inhibit magmatic flow and magmatic

fabric development. A theory shared by Arbaret et al. (1996)

proposing that fabrics in magmas could form at evenO50%

melt fraction.

Experimental modelling of magmatic fabrics such as tiling

(Fernandez et al., 1983; Arbaret et al., 1996; Correa-Gomes et

al., 2001) in sheet-like bodies demonstrates that symmetric or

asymmetric fabricsmaydevelop,which is related to internal or

external flow, respectively. Correa-Gomes et al. (2001)

developed a model based on the PDO (preferred dimension

orientation) of crystals occurring in vertical dykes or sheet-

like igneous bodies with shear movement along the walls.

This model uses a fabric ellipsoid as a kinematic strain

marker, which is representative of crystals or xenoliths

within the dyke. Through the application of different

stresses along the walls of the dyke and changing magma

velocities within, the development of fabrics was monitored

and was predominantly found to be asymmetric in nature,

especially when an external stress was applied. It is due to a

concordance between this asymmetry and sense of mag-

matic tiling that they suggest that magmatic tiling may

enable determination of a kinematic direction. However, in

the above model and in previous models the reliability of

using tiling as a shear indicator was always questioned as it

was found that within igneous bodies the tiled phenocrysts

often indicated opposing senses of shear.

Blumenfeld and Bouchez (1988) while working on the

Barbey–Seroux granitoid body in France found that even
though the tiled phenocrysts did show an opposing shear

sense the greater percentage of them were concurrent with

the overall tectonic history of the area. It remains, however,

that up to 30% of tiled phenocryst pairs indicated an

opposing shear sense. Therefore the “reliability of this

structure is still uncertain”, as stated by Passchier and

Trouw (1996, p. 127). It is common practice to deduce shear

sense based on a few observations of tiling sense and in

effect tiling is used as a kinematic indicator. This may

ultimately lead to anomalous results. It is of geological

importance to understand the formation of magmatic tiling

and the extent to which it may be used as a kinematic

indicator. In addition, it also gives an insight into under-

standing the dynamics of magmatic flow and the formation

of magmatic state fabrics. The model presented here for the

development of tiling attempts to address the uncertainty

surrounding this structure by resolving the extent to which it

may be used as a kinematic indicator and formulating

guidelines for understanding its significance.
2. Flow kinematics

The kinematics of deformation is described using basic

concepts from continuum mechanics. For geological

materials modelled as fluids, this means describing the

velocity field. At certain scales most observed geological

deformation is heterogeneous, but usually an alternative

scale can be chosen whereby deformation can be effectively

considered to be homogeneous. This greatly simplifies the

mathematical description of deformation and flow (Passch-

ier, 1997); however, it is always important to remember that

this is just an approximation. An additional simplification of

steady state flow is usually made in geological applications

thereby eliminating any variation of the velocity field over

time. Under these assumptions, the velocity field (v) can be

described in terms of the velocity gradient tensor (L) and

position (x):

vZLx (1)

where

LZ
vv

vx
(2)

and homogeneity is guaranteed here by the assumption of a

linear relationship between velocity and position and also

that the velocity gradient tensor is constant. It is also

implicit in these relationships that the velocity at the origin

is zero and the velocity gradient tensor is evaluated at the

origin (and hence must be constant).

In terms of components:

vi Z Lijxj (3)

Lij Z
vvi
vxj

(4)



Fig. 2. (a) Velocity gradient tensor components L12 and L21 describe how

the velocity vectors (small arrows) linearly vary near the origin. Combining

these components in different proportions generates all possible flow types.

For example, (b) WkZ0, pure shear with two mutually normal flow

apophyses (l1 and l2). Heavy arrows show the local rotation sense. (c)WkZ
0.5, intermediate between pure and simple shear, with two sub-normal flow

apophyses. (d)WkZ1, simple shear both flow apophyses coincide along the

shear direction and (e) WkZ4, no real apophyses exist and pulsating strain

histories occur.
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and isochoric flow implies that LiiZ0. It is convenient to

consider flows described by the following velocity gradient

tensor:

LZ
0 L12

L21 0

 !
(5)

which automatically satisfy the isochoric assumption. The

kinematical vorticity number (Wk) is given by (Ghosh,

1987):

Wk Z
L12 KL21
L12 CL21j j

(6)

By simple analysis it is clear that the general deformation

under consideration encompasses the three deformation

histories of Means et al. (1980) and the five steady

progressive deformation categories of Ghosh (1987).

The convention for angles and rotations used here is that

the positive ordinate axis is the zero angle direction and that

counter-clockwise angles and rotations are positive and vice

versa for the clockwise case. The eigenvectors of L (also

known as the flow apophyses by Ramberg (1975)) are

directions of zero rotation, i.e. material particles initially

within these directions remain so, whereas other particles

tend to be repelled from or asymptotically attracted into the

flow apophyses (Passchier, 1997). They are particularly

helpful in visualising the passive behaviour of points and

lines as they divide the flow into zones of counter-clockwise

and clockwise rotation (see Fig. 2). The eigenvectors are

given by:

l1 Z

ffiffiffiffiffiffiffi
L12
L21

r
1

0
@

1
A (7)

l2 Z
K

ffiffiffiffiffiffiffi
L12
L21

r
1

0
@

1
A (8)

It is clear that for Wkj jO1, some of the components of

the eigenvectors are imaginary and do not have a physical

meaning. The two eigenvectors coincide under simple shear

( Wkj jZ1) and in all other cases remain distinct.
3. Modelling rotation of rigid phenocrysts

Phenocrysts have been modelled in the past as rigid

ellipsoids immersed in a slow-moving linear viscous

(Newtonian) fluid and the hydrodynamical model of

Jeffery’s (1922) applied. In this paper only the 2D case is

considered and the 2D version of Jeffery’s (1922) model is

used whereby phenocrysts are modelled as ellipses. Ghosh

and Ramberg (1976) studied the characteristics of this

model in detail. Quoting Jeffery (1922), Ghosh and

Ramberg (1976) stated that the rotation rate ( _f) of a rigid

ellipse major axis during simple shear deformation is a
function of axis orientation (f), shear strain rate ( _g) and

ellipse axial ratio (R) as follows:

_fZ
_gðR2cos2fCsin2fÞ

R2 C1
(9)

however, they use the convention that the positive

coordinate axis is the zero orientation and that clockwise

rotation is positive. In order to conform with the kinematics

of the general flow described earlier (see Eq. (5)), this

equation must be modified. For the general deformation

considered here, rate of rotation of the rigid ellipse long axis

is derived to be:

_fZ
L21 KL12

2
C

ðL21 CL12ÞðR
2 K1Þ

2ðR2 C1Þ
cos2f (10)

This is an interesting equation in itself and can be used to

reproduce the results of Ghosh and Ramberg (1976);

however, in addition, flows with Wkj jO1, i.e. pulsating

strain histories, can also be studied.

A complete understanding of the solution of Eq. (10) is

possible without solving it by employing some of the



Fig. 3. Plots of _f (rotation rate) against f (object orientation). (a) A/B!K1,

rotation rate is always negative (clockwise) although objects rotate more

slowly for fZ08 and faster for fZ908. (b) A/BZK1, rotation rate is

always negative (clockwise) except at fZ08 where the rotation rate is zero

(a fixed point) implying that objects obtaining this orientation remain in that

orientation. (c) K1!A/B!1, in this case there are both negative and
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techniques of non-linear dynamics. Much of this analysis

can be performed graphically as well as symbolically, thus

an intuitive understanding is possible for non-mathemati-

cians. First the equation is rearranged so that it is written in

terms of Wk (using Eq. (6)):

_fZ
L21 CL12

2
KWk C

ðR2 K1Þ

ðR2 C1Þ
cos2f

� �
(11)

providing L21CL12O0 otherwise the sign ofWk term should

change. This requirement is ensured by choosing L12O0

and L21OKL12 giving WkOK1. Eq. (11) can also be

written as:

_fZACBcos2f (12)

where AZKðWkðL21CL12Þ=2Þ and BZ ðL21CL12ÞðR
2K1Þ=

2ðR2C1Þ. This is an equation that occurs commonly in

many other branches of science and engineering (Strogatz,

1994) and is termed a non-uniform oscillator. Eq. (12)

emerges from Jeffery’s (1922) solution and has been studied

by Ghosh and Ramberg (1976), Freeman (1985), Passchier

(1987) and Jezek et al. (1996), as well as many others in the

context of structural geology. It has period p, so that the full

characteristics of the equation can be examined for f in [K
p/2, p/2]. Taking Wk as being in the interval [K1, N] (so

that Eq. (11) is valid), there are five distinct behaviours

depending on the ratio A=B ¼KðWkðR
2 þ 1Þ=ðR2K1ÞÞ (see

Fig. 3):
positive rotations and two fixed points. The fixed point for f!08 is unstable

insofar as any perturbation away from it causes an object to continue to
1.
rotate away from it. The fixed point for fO08 is stable and any perturbation

away from it is immediately rectified by the object rotating back into the
A/B!K1: in this case there are no fixed points

(orientations were the rotation rate is zero) and all

objects rotate with the same sense.

fixed point position. The cases shown in (d) and (e) are the reverse of (b)
2.

and (a), respectively (i.e. positive instead of negative rotation).
A/BZK1: a single fixed point has emerged and all

objects rotate in the same sense; however, objects whose

long axis is parallel to the fixed point do not rotate. This

fixed point is termed half-stable insofar as on one side

objects rotate towards the fixed point but on the other

they rotate away.
3.
 K1!A/B!1: the single fixed point has branched into

two fixed points and in between fixed points objects

rotate in opposite senses. Objects tend to rotate towards

one fixed point (termed stable or an attractor) but rotate

away from the other fixed point (termed unstable or a

repeller).
4.
 A/BZ1: the two fixed points of case 3 have reconverged

into a single half-stable fixed point.
5.
 A/BO1: again there are no fixed points but all objects

rotate with the same sense, but in the opposite sense to

those in case 1.

In terms of non-linear dynamics the behaviour of the

system can be summarised on a bifurcation diagram (see

Fig. 4). This system exhibits a saddle-node bifurcation at

A/BZK1 where a single fixed point is created and

subsequently bifurcates into two fixed points as A/B

increases. The behaviour of a rotating object depends on
both A and B and therefore on both the flow field and the

object axial ratio. For A/B!K1 objects rotate continuously

whereas for A/BZK1 objects asymtotically rotate into

parallelism with the half-stable fixed point orientation and

for K1!A/B!1 objects asymtotically rotate into paralle-

lism with the stable fixed point orientation. At A/BZ1 the

stable and unstable fixed points converge back into a single

half-stable fixed point and for A/BO1 objects continuously

rotate once again.

It is important to differentiate between continuously and

asymptotically rotating objects. Because the axial ratio of

tiled objects can be measured directly in the field, it is better

to formulate the answer in terms of R. Objects continuously

rotate for A=Bj jO1, that is when:

Wk!K
R2 K1

R2 C1
or WkO

R2 K1

R2 C1
(13)

so that for RZ1 all objects are spherical and continuously

rotate at a constant rate independent of Wk, although for

WkZ0 the rotation rate is zero, whereas for RZ2, all



Fig. 4. Bifurcation diagram of rotation of elliptical objects where orientation (f) is plotted against A/B and dark arrows represent negative rotation and light

arrows positive rotation. For A/B!K1 all objects rotate negatively; however, when A/BZK1 a saddle node bifurcation occurs where a single fixed point

develops and for K1!A/B!1 the single fixed point bifurcates into a pair of stable and unstable fixed points. At A/BZ1 the pair of fixed points merge once

more into a single fixed point and there are no stable positions for A/BO1.
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objects continuously rotate only when Wk!K0.6 or WkO
0.6. From Fig. 5 it is evident that for asymptotically

rotating objects to occur over a substantial range of Wk

objects must have an axial ratio greater than approxi-

mately three.

The angles subtended between the fixed point orientations

are related to Wk. The fixed point orientations are found by
Fig. 5. Wk versus R with regions where continuous and asymptotic rotation

occurs identified.
equating Eq. (11) to zero and then solving for f:

fZG
1

2
cosK1 1CR2

1KR2
Wk

� �
(14)

so that the angle between the fixed point orientations (a) is:

aZ cosK1 1CR2

1KR2
Wk

� �
(15)

As R becomes large, then the behaviour of the object

approaches that of a passive line and the angle between

fixed point orientations approaches that of the flow

apophyses discussed in the previous section (see Fig. 6)

and is given by:

aNZ cosK1 KWk

� �
(16)
Fig. 6. Relationship between the angle between fixed points (a), aspect ratio

(R) and Wk. The angle between the flow apophyses is given by RZN.



Fig. 7. (a) Relationship between observed proportion (M) in percent and

upper and lower confidence interval (MU andML) for 100 data. (b) Graph of

variation of maximum confidence interval against the number of data. For n

less than approximately 200, the confidence interval is large.
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4. Confidence intervals for proportional statistics

As with most geological measurements, there are errors

associated with individual observations as well as errors

arising from the fact that the ultimate calculation is based on

a sample of the total population. It is rarely if ever possible

to observe the total population. Therefore it is good practice

to quote a reasonable confidence interval for any calculated

value. For example, giving a value with a 95% confidence

interval means that there is a 0.95 probability that the true

value lies within the quoted interval. The relationship

between Wk and tiling presented below will be based on the

proportion M of dextrally (or sinistrally) tiling pairs

and statistics of rates and proportions are well studied

(Fleiss, 1981).

Fleiss (1981, p. 14) gives expressions for the upper and

lower limits of a single proportion and these are adapted to

give expressions for upper and lower limits for M (i.e. ML

and MU):

Z
ð2nMCz2 K1ÞGz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 K ð2C1=nÞC4Mðnð1KMÞC1Þ

p
2ðnCz2Þ

(17)

where n is the total sample size and z is a percentile of the

standard normal distribution (where a value of 1.96 gives

the 95% confidence interval for M). The upper interval is

generated by using the positive sign and vice versa for the

lower interval. In most standard statistics texts (see, for

example, Devore, 1995, p. 288) a much simpler version of

the above confidence interval is given, which specifically

assumes that the proportion M is of moderate value, i.e.

0.3!M!0.7. The simpler version does not apply for very

high or low values ofM, which is clearly a possibility in the

present situation. Inferences aboutMmay be made using the

binomial probability distribution but when nMR5 and

n(MK1)R5 the binomial distribution is well approximated

by the normal distribution (Devore, 1995, p. 163). This

assumption is used in deriving Eq. (17) (Fleiss, 1981, p. 13).

A plot of the confidence intervals is shown in Fig. 7a for nZ
100. The upper and lower intervals are generally asym-

metric and include lower bounds for MZ100% and upper

bounds for MZ0%. In the simplified case, there are no

bounds forMZ100 or 0%, i.e. erroneously implying that the

error is zero.

By taking the derivative of the difference between MU

and ML, and equating with zero, it is found that the

maximum error occurs for a value of M:

M Z
1

2
K

1

2n
(18)

Therefore substituting this value into Eq. (17), the

relationship between maximum error and population size is

obtained:
ðMU KMLÞmax Z
zffiffiffiffiffiffiffiffiffiffiffiffiffi

nCz2
p (19)

In order to estimate an acceptable minimum sample size

the maximum confidence interval size (MUKML)max is

plotted against sample size n (Fig. 7b) for zZ1.96 (i.e. 95%

confidence interval). These graphs show firstly the depen-

dence of confidence interval on the proportion and secondly

that in order to obtain a maximum confidence interval of

less than approximately 15% (i.e. G7.5% on average), at

least 200 readings should be used.

The confidence intervals described here are entirely due

to sampling errors and should be treated as a minimum

estimate as they do not take into account errors from other

sources. Additional errors may arise due to (1) erroneous

identification of tiling in the field, (2) the assumption of flow

homogeneity being inaccurate and the flow-type may have

in fact rapidly varied spatially, (3) the flow-type may have

varied over time and may not have been steady-state and (4)

Jeffery’s (1922) model for rotation (see next section)

assumes isolated objects whereas the model here assumes

object interaction.
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5. Mathematical model of tiling
5.1. Introduction

The relationship between magmatic tiling characteristics

and flow kinematics is studied here by numerically

simulating the development of tiling across a range of

values for Wk Although the development of tiling is

phenomenologically simple, i.e. two objects collide, it is

conceptually difficult to decide whether two initially placed

objects will end up tiling or not because each object is both

rotating and relatively translating due to the bulk flow

kinematics. The approach taken here is simplistic but

insightful and any assumptions and corresponding limi-

tations are fully acknowledged throughout.
5.2. Phenocryst motion

Firstly the rotation of each object is modelled using Eq

(12), which has the following solution:

fðtÞZKtanK1 atanhðatC tanhK1bÞ

AKB

� �
(20)

where aZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2KA2

p
, bZ ðatanf0Þ=ðACBÞ and f0 is the

initial orientation of the ellipse long axis. However, extreme

care is required when applying this equation because b can

take on large values outside the range of tanK1 and the

following special cases need to be observed:

if B2 KA2O0 and bO1

fðtÞZKtanK1 aðeg1 CeKg1Þ

ðAKBÞðeg1 KeKg1Þ

� �

if B2 KA2O0 and K1!b!1

fðtÞZKtanK1 atanhðatC tanhK1bÞ

AKB

� �

if B2 KA2O0 and b!K1

fðtÞZKtanK1 aðeg2 CeKg2Þ

ðAKBÞðeg2 KeKg2Þ

� �

if B2 KA2!0 fðtÞZ tanK1 atanðatC tanK1bÞ

AKB

� �

where:

g1 ZatC
1

2
ðlnðbC1ÞK lnðbK1ÞÞ

g2 ZatC
1

2
ðlnðKbK1ÞK lnðKbC1ÞÞ

Modelling the rotation of phenocrysts by the equations of

Jeffery’s (1922) serves only as a first approximation. This is
because Jeffery’s (1922) model assumes a single object in

isolation; however, in the present model objects interact.

Therefore around a single object the velocity field is

disturbed (Jeffery, 1922; Jezek et al., 1999; Mandal et al.,

2001; Samanta et al., 2003), which should affect the

behaviour of nearby objects. This type of interaction is

not taken into account in the present model. However, no

analytical solution to this problem presently exists and

although a numerical solution is possible it is practically and

computationally unfeasible to perform the hundreds of

thousands of runs in order to achieve the results obtained

here using the first order approximation.

Secondly the relative motion of nearby objects is

modelled by solving Eq. (3) given the particular form of

L (Eq. (5)). This leads to the following system of ordinary

differential equations:

dx1
dt

Z L12x2

dx2
dt

Z L21x1

which have the following solution for an object whose

centroid is (x10, x20):

x1ðtÞZ x10coshðutÞCx20xsinhðutÞ

x2ðtÞZ
x10
x

sinhðutÞCx20coshðutÞ

where uZ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L12L21

p
and xZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L12=L21

p
. Caution is required if

L12L21!0 as account must be taken of the impact of

complex numbers on the solution; however, the following

identities, cosh(ix)Zcos(x) and sinh(ix)Zisin(x), take care

of any modifications required. In the case where either of

L12 or L21 take the value zero, we have the following

limiting cases: for L12Z0:

x1ðtÞZ x10

x2ðtÞZ x10L21tCx20

and for L21Z0:

x1ðtÞZ x10 Cx20L12t

x2ðtÞZ x20

which correspond to simple shear parallel to the x2 and x1
directions, respectively.

Combining the rotational and translational components

of phenocryst motion results in complex overall motions.

These motions are difficult to visualise and this difficulty is

compounded when trying to conceive how two such objects

may interact. Accordingly the model is studied in detail by

computer (see Section 5.4); however, it is necessary to

consider at least a subset of these motions in order to

appreciate the results (see for example the particular results

in Fig. 16).
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Modelling the relative displacement of phenocrysts using

the above-mentioned equations is reasonable, although,

once again perturbations of the velocity field due to the

presence of objects will distort particle paths. However, in

the absence of an analytical solution this is the best

approach at present. Note that in the present model only

pairs of objects of the same shape, size and initial

orientation (i.e. parallel) are considered.
5.3. Determining sense of tiling

Determining the sense of tiling is intuitive; however, in

order to mathematically analyse the problem in hand, a

stricter definition of tiling (in two dimensions) is required

With reference to Fig. 8 the following procedure is

proposed. First select one of the tiled pair (it does not
Fig. 8. Reference diagram for determining sense of shear from a tiled pair of

objects.
matter which one) and denote its centre point by q and

denote the centre of the other object by s. Identify the centre

point of the short side of the object with centre q that is

closest to s, and denote it by r. Construct the vectors u and v

from q to r and q to s, respectively. The sense of tiling is

given by the third component of the cross product:

u!v

u!vj j

whereC1 indicates a dextral sense andK1 a sinistral sense.

The definition just given includes end-on-end tiling as

well as side-by-side tiling (see Fig. 9). However, it is

important to distinguish between end-on-end and side-by-

side tiling as most practitioners consider (and probably

observe) only the side-by-side variety. The vectors u and v

are used again and from the definition of the cross product in

2D:
Fig. 9. (a) Side-by-side tiling occurs for sinqRsinqb. (b) The angle qb is

defined when the crystals make contact at a single point. (c) End-on-end

tiling occurs when sinq!sinqb.
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sinqZ
u!vj j

uj j vj j

where q is the angle between u and v. The boundary

between side-by-side and end-on-end tiling occurs where

the crystals touch at corners so that v parallels the crystal

diagonal (see Fig. 9). If the boundary angle is denoted by qb,

then for end-on-end tiling sinq!sinqb and for side-by-side

tiling we have sinqRsinqb.
5.4. Software and analysis

In order to investigate the relationship between mag-

matic tiling, flow kinematics and crystal spacing software

was written in CCC to simulate the evolution of a pair of

objects behaving according to the equations given above

The geometry is arranged as shown in Fig. 10 where each

object has a long axis of length 2a and a short axis of length

2bZ1 so that the axial ratio RZ2a. Object centroids are

separated by a distance d, which can be viewed as a

percentage (p) of the long axis length 2a. The objects are

both initially oriented with angle fobj (i.e. are parallel to

each other) and the line joining their centroids has an initial

orientation of fl. Both angles are randomly selected from a

uniform distribution on the [0, p] interval.

The analysis proceeded by first selecting a value for R

(we studied RZ2.0, 2.5, 3.0, 3.5, 4.0) and then taking pZ
50, 75, 100, 125, 150, 200 and 250%. For each p, the flow

for L12Z1 and L21ZK0.2 up to 1.0 in 0.02 steps was

investigated (i.e. corresponding to WkZ1.5 to 0). For each

combination of axial ratio, separation and flow, the initial

relative positions and orientations of two objects were

continuously generated by obtaining values for fobj and fl

from the uniform distribution, and then allowed to evolve,

until such time as there were a total of 1000 dextrally or

sinistrally tiled object pairs were measured or a total of

35,000 attempts were made. For each value of fobj and fl

there can be six possible outcomes: (1) dextrally tiled, side-
Fig. 10. Definition diagram for fobj, fl and d.
by-side pair, (2) dextrally tiled, end-on-end pair, (3)

sinistrally tiled, side-by-side pair, (4) sinistrally tiled, end-

on-end pair, (5) non-tiled pair, (6) bad initial position (e.g.

they were overlapping to begin with—a physically imposs-

ible condition).

Detecting the non-tiled outcome may pose some

difficulty. For Wk!1.0 crystals tend to move apart so that

once a threshold distance has been surpassed then it is

certain that the crystals will not interact, whereas for WkO
1.0 the pulsating nature of the flow implies that crystal pairs

periodically move closer together then further apart.

Additionally, the period of rotation of the crystals is always

less than that of the flow, making interaction detection even

more difficult. In this implementation, the no tiling outcome

was detected by a lack of interaction after a suitably long

period of time. End-on-end tiling has not been observed in

the field but is a real feature of the model as a possible

outcome. However, in the next section it is seen that end-on-

end tiling only occurs for WkO1, possibly explaining the

absence of this phenomena in the field. Alternatively, it may

be that this structure is not as stable as side-by-side tiling

and thus does not survive.

Crystal spacing greater than 250% is not considered in

the analysis because 250% corresponds to a crystal fraction

of less than 10%, i.e. a low density or concentration of

crystals. At even lower crystal concentrations particle

interactions becomes less probable and therefore tiling is

less likely to be observed. However, even at low

concentrations, tiling would eventually occur if the

simulation were left to run long enough.

In this study the relationship of tiling to finite strain is not

investigated. Tikoff and Teyssier (1994) presented the

results of a simulation study of porphyroclast interaction

and demonstrated a sharp increase in density of clast

imbrication with increasing finite strain (for Wk between 0

and 1). Therefore it is expected that tiling density would also

increase with finite strain. However, in the case of pulsating

strain histories the situation could occur whereby tiling

density increases while finite strain values fall. More

accurately then, tilting density should increase with the

duration of the flow. In the current study the relationship

with flow-type is being studied so that by letting object pairs

evolve to one of the six outcomes above, is in effect ignoring

the influence of finite strain or duration of flow.

5.5. Relationship between initial spacing and crystal

fraction

In the methodology outlined above one of the key

variables is the initial separation (i e. d or p); however,

igneous petrologists normally talk in terms of crystal or melt

fractions rather than spacings. Furthermore the observed

crystal fraction (fc) is relatively easy to measure in practice,

whereas estimating the initial spacing poses more problems

for measurement. Therefore a relationship between initial

spacing and crystal fraction is required. Crystal fraction is



Fig. 11. Consider an equilateral triangle of edge length dZ2ap/100, with

three objects of identical size and orientation placed at each vertex. This is a

graphical illustration that the area of overlap between the triangle and the

objects is equal to half the area of one such object.

Fig. 12. Relationship between crystal fraction (fc) and spacing (p) for

different aspect ratios.
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simply the percentage volume or area occupied by a crystal

species of interest, in the current case, tiling phenocrysts.

The model studied here is 2D and thus crystal fraction is a

percentage area.

In the model studied above, pairs of objects are always

generated with a spacing of d; therefore, it is reasonable to

assume that the average spacing of the crystal population is

also d. From this we can construct the average situation

whereby three crystals are d apart from each other,

necessitating in an equilateral triangle as shown in Fig.

11. The crystal fraction is the ratio of the combined areas of

the crystals overlapping with the triangle, to the total area of

the triangle. In the model studied all three crystals are of the

same size and in the simple case of all three having the same

orientation, graphical arguments (see Fig. 11) indicate that

the overlap area sums to half the area of one crystal. Integral

mathematics indicates that for three arbitrarily, but not

identically, shaped objects of the same area whose

orientations are randomly selected from the uniform

distribution on [0, p], arranged in any triangle (i.e. not

necessarily an equilateral triangle) also overlap by half the

area of one such object (see Appendix A).

In the present case the area of the triangle is given by:

1

2
d2sin608Z

ffiffiffi
3

p

4
d2 Z

ffiffiffi
3

p

10000
p2a2

The area of one object in the present case is 2aZR, so the

crystal fraction (as a percentage) is therefore:

fc Z
2000000ffiffiffi

3
p

p2R

Fig. 12 illustrates the crystal fraction for parameter

values considered in the present study and indicates that for
Fig. 13. Plots of percent occurrence of (a) side-by-side tiling pairs (b) end-on-end t

object aspect ratio of RZ3 and a variety of initial spacings.
initial spacings R100, the crystal fraction is below the

RCMP threshold above which predominantly solid-state

deformation processes are thought to occur. At pz150 the

crystal fraction is below 20%, whereas for pR200 the

crystal fraction is below 10%. In other words, the model

parameters considered here reflect a range of crystal

fractions from very high to very low.
6. Results

The numerical experiments generated a large quantity of

data, which is summarised graphically in Figs. 13–15. There

are a number of remarkable features illustrated by this data,

noting that the shear sense of the flow is dextral for WkO0.

Only minor variations in observed patterns occurred for

different tile aspect ratios (R), therefore the results for RZ
3.0 are representative and are examined in detail. First of all

the relative importance of the various outcomes are

presented in Fig. 13 as percentages. For example, Fig. 13a

displays the percentage of side-by-side tiled pairs compared

with the total number of crystal pairs. Side-by-side tiling is

common for low spacings but becomes rare for high

spacings, largely independent ofWk. That being said there is

a slight change in behaviour forWkO1. By contrast, end-on-

end tiling is generally of minor importance but is significant

for WkO1 (see Fig. 13b). However, as mentioned earlier,

the absence of field-based observations of end-on-end tiling

may indicate that super-shear is not common in nature. The

occurrence of no tiling becomes dominant for high spacing

emphasising that tiling occurrence is strongly related to

initial spacing (see Fig. 13c). This study therefore indicates

that it may be possible to relate the frequency of occurrence

of tiled pairs in the field to the density of crystals present at

the time of fluid flow. Fig. 13c also highlights a change of

behaviour of the system forWkO1, whereby the occurrence
iling pairs and (c) no tiling pairs compared with total pairs againstWk for an
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of no tiling is less common for WkO1, presumably due to

the occurrence of end-on-end tiling.

Fig. 14 presents the relationship between the proportion

of dextral tiling, spacing and Wk. Again there is a clear

behavioural distinction betweenWk!1 andWkO1. Fig. 14a

illustrates the relationship for side-by-side tiling. At WkZ0

there is a 50/50 occurrence of dextral/sinistral tiling

followed by an upward trend to predominantly dextral

tiling at WkZ1.0. For low spacing (p!75%) the upward

trend is minor but becomes more pronounced for higher

spacings. For WkO1 (super shear) the dominance of side-

by-side dextral tiling diminishes and at high spacing

sinistral side-by-side tiling predominates. There is a clear

and dramatic change of behaviour under super shear flow.

End-on-end tiling presents a variable pattern (Fig. 14b) for

Wk!1 reflecting its rarity in this regime. It is important to

be cognisant of the frequency relationships in Fig. 13 when

interpreting the data in Fig. 14. The total tiling proportion

patterns in Fig. 14c reflect the dominance of side-by-side

tiling (Wk!1) and end-on-end tiling (WkO1) in different

behavioural regions.

This study highlights that not only is there a relationship

between tiling proportion and flow type, but the exact nature

of the relationship depends strongly on the average initial

spacing of the rotating objects. It also demonstrates that

even under dextral simple shear (where all objects rotate

dextrally) there can be a significant proportion of sinistrally

tiling pairs. In most cases, there are a minimum of 20–30%

of object pairs tiling with the opposite sense to that of the

flow shear sense. This clearly illustrates the danger in

assigning a simple shear flow type and shear sense on the

basis of a few observations of crystal tiling.

In Fig. 15 detailed results for the numerical model for

RZ3.0 and initial spacings of 50, 75, 100, 125 and 150%

(i.e. fcZ154.0, 68.5, 38.5, 24.6 and 17.1%, respectively) are

presented for WkZ0.0, 1.0 and 1.5. Black portions (i.e. no

points) are regions where impossible start conditions occur

and are found for fobj close to fl. The extent of this region is

primarily related to initial spacing and also to object aspect

ratio. Low p-values result in a large amount of impossible

start positions whereas for p greater than approximately 100

there are no impossible start positions as the two objects are

too far apart to initially interact. The rest of the diagram is

filled with the result of starting from a particular position. In

general there is a regular pattern and arrangement of the

different regions giving dextral, sinistral and no tiling. In

general forWk!1, the various regions remain quite distinct,

independent of parameter values and no mixed regions

occur which might indicate extremely complex/chaotic

behaviour. However for WkZ1.5, some mixing is evident

for pO100 (Fig. 15), which may indicate more complex

behaviour in this region.

There are a number of general trends evident in the

detailed data consistent with the summary data of Figs. 13

and 14. The proportion of no tiling (i.e. red) increases as the

crystal fraction decreases, hence the density of tiling
behaviour in Fig. 13. As Wk goes from 0.0 (pure shear) to

1.0 (simple shear) the blue area of side-by-side dextral tiling

increases from 50/50 to predominate, reflecting the

relationships illustrated in Fig. 14. For low crystal fractions

the region where tiling can occur becomes a very thin strip,

although in every case there still remains a sizeable portion

where tiling opposite to the fluid shear sense can occur. End-

on-end tiling predominates for WkO1 but also occurs for

high p and Wk!1, but is subordinate to side-by-side tiling.

In Fig. 16a and b the evolution of an object pair is

illustrated for WkZ0, RZ3.0 and pZ125%. It is clear that

different starting positions lead to different senses of tiling.

In Fig. 16b and c all parameters are the same as for Fig. 16a

and b except that the flow type is simple shear (i.e. WkZ0).

Again, different starting positions can lead to both dextral

and sinistral tiling even though the sense of simple shear is

dextral.
7. Application to and re-analysis of a natural example

Blumenfeld and Bouchez (1988) reported the tiling

characteristics of the Barbey–Seroux granite located in

north eastern France in the Vosges massif and this remains

the most comprehensive published study of tiling and tiling

data. They measured the sense of shear indicated by tiled K-

feldspar megacryst pairs in both the XZ plane (i.e. normal to

foliation and parallel to lineation) and XY plane (i.e. normal

to foliation and lineation). In the XY section, Blumenfeld

and Bouchez (1988) demonstrate the occurrence of sinistral

and dextral tiling in close to equal proportions, which they

interpret as indicative of 2D pure shear (i.e.WkZ0.0, which

agrees with the results presented above). Because they

present only summary data for the XY section a more

detailed analysis, including confidence intervals, cannot be

executed. However, they do present detailed data for the XZ

section.

A simplified cross-section including dextral tiling

proportions (M) and numbers of observations (n) from the

XZ section sample data of Blumenfeld and Bouchez (1988)

is schematically illustrated in Fig. 17a. In Fig. 17b an

example of estimating Wk confidence intervals from

calculated tiling proportion intervals is shown. In relating

the data of Blumenfeld and Bouchez (1988) to the results of

the current study, assumptions must be made about the

initial spacing and aspect ratio of the phenocrysts.

Regarding initial spacing it is noted that for fc to be below

the RCMP threshold it must be that pO100% (see Fig. 12).

Furthermore from Fig. 14 with pO100% it is noted that

the exact value of the initial spacing does not greatly

influence the form of the relationship between tiling

proportion and Wk, so that choosing pZ150% (i.e. fcZ
17.1%) will not affect the results of this analysis greatly.

From photographs of the granite, it is reasonable to assume

that on average RZ3.0. Wk values along with confidence



Fig. 14. Plots of proportion of (a) side-by-side dextral tiling pairs (b) end-

on-end dextral tiling pairs and (c) total dextrally tiling pairs against Wk for

an object aspect ratio of RZ3 and a variety of initial spacings.
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intervals calculated using the model developed here are

given in Table 1.

This re-analysis study highlights the importance of

sample size when utilising tiling to estimate the nature of
deformation and shear sense. Only sample 2 (nZ363)

provides narrow enough bounds forWk to confidently assert

that a dextral simple shear deformation led to the observed

tiling pattern. For all other samples n%110, and in each case

the exact type of deformation cannot be determined and

could range from mixed pure/simple shear to simple shear

(samples 1, 4, 5 and 6) or from pure shear to simple shear in

the case of sample 3. In every case the correct (i.e. dextral—

on the basis of sample 2) shear sense is determined even

though the number of data is too low to restrict the exact

flow type with any confidence. This suggests that for small

samples sizes (nR60) the shear sense may be determined.

However, if the observed proportion is near to 50% then the

confidence limits are likely to enclose a large range of Wk

values so that much more than 60 observations may be

required to restrict the flow-type and determine the shear

sense.

The threshold of nZ60 can also be derived from Eq. (19)

for the maximum error, by finding the number of data which

gives a maximum error (i.e. (MUKML)max) of 25%. Since

the tiling proportion varies between 50 and 75% in Fig. 17,

i.e. a range of 25%, then for precision the maximum error

must be %25% corresponding to nR60. However, in order

to determine the exact flow type much more data than 60 is

required.
8. Discussion

In this paper we present the results of a simple

mathematical model for tiling development in 2D, which

takes into account object rotation and translation. We

believe that this model provides new insights into the tiling

phenomena. However, there are many assumptions incor-

porated into the model that should always be acknowledged.

Primarily, the influence of the perturbed velocity field

around rotating objects is ignored, only the evolution of

initially parallel pairs of objects is considered and the model

is restricted to 2D.

Assessing the relative importance of the perturbed

velocity field is not possible at present because a general

theory for the motion of adjacent particles does not exist.

Ildefonse et al. (1992a) conducted experiments investi-

gating adjacent particle interactions during simple shear and

they found that adjacent particles tend to rotate slower than

isolated particles (i.e. rotating according to the Jeffery’s

(1922) model). Except for the case of particles oriented

initially parallel to the sense of shear, most adjacent

particles remained within 58 of the theoretical prediction

(see figs. 9–12 of Ildefonse et al., 1992a) for shear strains up

to 1.2. More recently, Samanta et al. (2003) found similar

effects both theoretically and experimentally for adjacent

circular objects. In a detailed experiment illustrated in fig. 6

of Arbaret et al. (1996) RZ2.5,WkZ1, fobjZ908, flZ1808

and pz75% and by comparison with Fig. 15 the predictions

of the present study agree with the observed sense of dextral



Fig. 15. Example of detailed results for RZ3, showing multiple plots of outcome (i.e. tiling type) by initial position (fl versus fobj) For low p there are black

areas which represent invalid starting positions due to a physically impossible initial overlap.
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tiling. These experimental results lend support to the validity

of the current model and the assumption that although the

perturbed velocity field around particles produces a noticeable
Table 1

Results of the re-analysis of the data of Blumenfeld and Bouchez (1988)

Sample n Dextral (M) Sinistral ML

1 60 73 27 59.7

2 363 67 33 61.8

3 110 59 41 49.2

4 63 68 32 54.9

5 52 75 25 60.7

6 72 68 32 55.8
effect, it is not sufficient to change the overall dynamics of the

population. More advanced theories and models are required

to fully address these issues.
MU WkL Wk WkU

81.9 0.84 1.04 1.06

71.5 0.90 0.97 1.02

67.3 z0.1 0.82 0.98

77.5 0.63 0.99 1.07

84.0 0.88 1.04 1.06

77.0 0.78 0.99 1.07



Fig. 16. Examples of tiling generated by the model for pure shear ((a) and (b)) and dextral simple shear flow ((c) and (d)). Arrows represent the local velocity

field. Previous positions of the objects are drawn in red and blue and a continuous black line gives the path of the non-fixed objects centre point. Note that for

dextral simple shear both dextral (concurring with the fluid flow shear sense) and sinistral (tiling sense opposite to that of the flow) tiling occurs.
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The model is restricted to initially parallel pairs because

assessing the sense of tiling of two touching non-parallel

particle pairs is fraught with difficulties. More sophisticated

models of particle behaviour need to be applied in order to

provide a proper treatment of non-parallel particle pairs.

The current model is restricted to 2D, whereas in practice

crystals are 3D objects immersed in a fluid moving in 3D.

The results presented here should only be considered with

these assumptions in mind. It is hoped that future work will

remove many of these assumptions and that more

sophisticated and refined models can be investigated.

Blumenfeld and Bouchez (1988) reported approximately

70% dextrally tiled object pairs (shear sense to the SW) and

therefore up to 30% of tiled pairs indicate the reverse shear

sense. However, theoretical models (Ghosh and Ramberg,

1976; Fernandez et al., 1983) of simple shear indicate that

all objects should rotate with the same shear sense (i.e.

dextral in a dextral shear zone). Therefore, by considering

rotation alone, there is an expectation that all tiled pairs

should display the same shear sense. Blumenfeld and
Bouchez (1988) suggested that the discrepancy between

observation and theory might be explained by (i) the flow

type departing from simple shear (Wk greater or less than

one) or (ii) tiling interactions being due to both rotation and

relative translation. The model presented here successfully

reproduces the results of Blumenfeld and Bouchez (1988)

by considering both rotation and relative translation and it is

only by considering the more complex situation that

realistic results can be achieved. The phenomena of tiled

pairs with opposing shear senses does not require a

departure from simple shear flow and according to this

study it should be the rule rather than the exception.

Therefore, the results presented here strongly support the

second option of Blumenfeld and Bouchez (1988).

Analogue experiments by Arbaret et al. (1996) demon-

strated that particle interaction is a process which takes

place in low concentration suspensions, therefore tiling

should not be restricted to high crystal fraction magmas as

previously supposed (Ildefonse et al., 1992b; Nicholas,

1992; Tikoff and Teyssier, 1994). The present study further



Fig. 17. (a) Schematic illustration of the Barbey–Seroux granite (after Blumenfeld and Bouchez, 1988) and sample locations. Note that here the section is

viewed from the NW, whereas the original illustration was viewed from the SE; this change was made to integrate the example with the main body of the text,

which mainly considers a dextral shear sense. (b) Example of how tiling proportion is related to Wk and estimation of confidence intervals for sample 2.
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supports this view, which demonstrates a consistent

variation in tiling proportion with Wk, object aspect ratio

and also crystal fractions from high to low. Arbaret et al.

(1996) also observed oppositely tiled pairs in their

experiments. However, this occurred during the late stages

of the evolution of the tiled pair (i.e. the separation phase).

In the present study tiled pairs were not allowed to evolve

beyond aggregation. More complex models need to be
developed to assess the influence of extended object pair

evolution on tiling proportions.

Tiling proportions have been shown to vary from 50%

for WkZ0 up to approximately 70% for WkZ1 (the details

depending on crystal fraction and object aspect ratios) for

models based on crystal rotation and translation. However,

it is very important to take into account the statistics of

proportions when interpreting natural data and in general a



Fig. 18. Illustration of the relationship between sample size (nZ10, 50, 200) and confidence intervals and how the interpretation of a tiling proportion may be

affected. Here the dark horizontal line represents the observed 70% tiling proportion and the dotted/dashed horizontal lines represent the confidence intervals.

The heavy (dextral) and dashed (sinistral) curves represent the tiling proportions predicted by the model.
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large number of observations of tiling are required to

determine Wk with confidence (nR200). For example,

consider the case of pZ150 and RZ3.0 shown in Fig. 18.

Suppose that the observedproportionofdextrally tilingpairs is

70% (indicated by a horizontal solid line), which if taken to be

absolutely correct indicates that Wkz1.0. However, super-

posing 95% confidence intervals related to the number of

observations changes the interpretation. If the tilingproportion

is based on nZ10 thenWk could be any value between 0 and

1.2 and the shear sense could be either sinistral or dextral. For

nz50 certainty regarding a dextral shear sense emerges,

althoughWk is in [0.7, 1.1] approximately. For nZ200Wk is in

[0.9, 1.02] and now there is certainty regarding shear sense and

flow type. Furthermore, due to the slow variation of tiling

proportion with Wk near 50/50 tiling proportions, a large

number of data are required to conclusively demonstrate a

pure shear flow type.

At the beginning of this paper the uncertainty of

Passchier and Trouw (1996 p. 127) of using tiling as a

shear sense indicator was noted. The results of the model

presented here allow some clarification of this point. Firstly

the interpretation of shear sense based on a single tiled pair

is undoubtedly erroneous. Furthermore, depending on the

values of the parameters studied, there is a requirement for

approximately 50–60 observations (over a region assumed

to have undergone a steady state homogeneous deformation

history) in order to determine shear sense and around 200 in

order to give a reasonable estimate ofWk. Therefore a single

tiled pair of crystals cannot be described as a shear sense

indicator and the caution of Passchier and Trouw (1996) is

justified.

The results presented here serve to motivate further

research into this phenomenon. Experimental verification of

the behaviours described here is required and more complex
models that include long-term evolution (initiation, aggre-

gation and separation as described by Arbaret et al. (1996))

and models that track the simultaneous evolution of large

populations of objects need to be explored.
9. Conclusions
1.
 A mathematical model for the development of tiling

including both rotation and relative translation was

presented.
2.
 A consistent relationship between tiling proportions and

Wk was found.
3.
 For pure shear there should be approximately 50%

dextrally and 50% sinistrally tiled pairs, whereas for

simple shear there should be around 70% of tiled pairs

consistent with the shear sense.
4.
 This relationship is observed for high and low crystal

fractions and a variety of object aspect ratios.
5.
 The density of tiling varies with the crystal fraction and it

may be possible to use the frequency of occurrence of

tiling to estimate the crystal fraction at the time of tiling.
6.
 By considering the statistics of proportions, it is shown

that for shear sense determination at least 60 obser-

vations are required, whereas for estimation of Wk at

least 200 observations should be taken.
7.
 A single observation of crystal tiling is a highly

unreliable shear sense indicator.
Acknowledgements

We would like to thank Prof. Joao Hippert for handling

the manuscript and Dr Joseph Jezek and an anonymous



K.F. Mulchrone et al. / Journal of Structural Geology 27 (2005) 179–197196
reviewer for constructively criticising and improving the

final version of this manuscript.
Fig. 19. An arbitrary shaped crystal is described by the polar function rZ
r(j), where j is the angle in radians. The shaded region is the area

subtended by an arc of b radians and q is the angle between the arc and the

x-axis. We wish to calculate the average area of the shaded region as q

varies uniformly from 0 to 2p.
Appendix A

Appendix A.1. An integral theorem

Given a function f with period p, which maps real

numbers onto real numbers then:

1

p

ðp
0

ðyCb

y
f ðxÞdxdyZ

b

p

ðp
0
f ðxÞdx (21)

where b%p. On the left hand side the integral
Ð yCb
y f ðxÞdx,

represents the area under the curve over a length b, which

will vary depending on y. The outer integral gives the sum

of all such integrals as y going from 0 to p. Finally, the

average area under the curve over a length b is calculated by

dividing by p. It is proven below that this is equivalent to the

right-hand side, which represents the proportion b/p of the

area under the curve taken over one period. Firstly:ðyCb

y
f ðxÞdxZ

ðb
0
f ðxCyÞdx (22)

therefore:ðp
0

ðyCb

y
f ðxÞdxdyZ

ðp
0

ðb
0
f ðxCyÞdxdy (23)

Make the following substitutions: xZs and yZtKs (note

that the determinant of the Jacobian of this transformation is

one, see for example Fraleigh (1990, p. 840)) to give:ðp
0

ðb
0
f ðxCyÞdxdyZ

ðb
0

ðsCp

s
f ðtÞdtds (24)

where 0%s%b and 0%tKs%p. Now:ðsCp

s
f ðtÞdtZ

ðp
0
f ðtÞdtC

ðsCp

s
f ðtÞdtK

ðs
0
f ðtÞdt (25)

but:ðsCp

s
f ðtÞdtZ

ðs
0
f ðtCpÞdtZ

ðs
0
f ðtÞdt (26)

because f has period p. Therefore Eq. (25) becomes:ðsCp

s
f ðtÞdtZ

ðp
0
f ðtÞdt (27)

Substituting Eq. (27) into Eq. (24) gives:ðp
0

ðb
0
f ðxCyÞdxdyZ

ðb
0

ðsCp

s
f ðtÞdtds

Z

ðb
0

ðp
0
f ðtÞdtdsZ b

ðp
0
f ðtÞdt (28)

By equating Eqs. (23), (24) and (28) and multiplying

both sides by 1/p, the theorem is proven.
Appendix A.2. Application to crystal fractions

In Fig. 11 three crystals are connected by an equilateral

triangle and the percentage area of overlap between the

three crystals and the triangle is required. However, in the

model considered here, the orientations of the crystals are

independently drawn from a uniform distribution on [0, 2p]

and are not fixed and parallel as shown in Fig. 11. Therefore

in order to calculate the crystal fraction, we need to

calculate the average area formed by the intersection of a

crystal and the triangle. In Fig. 19 an arbitrary shape is

shown with a fixed arc (i.e. represented by an angle of size

b) subtended and the area of interest shaded. We wished to

calculate the average area of the subtended region as q goes

from 0 to 2p. It is convenient to consider polar coordinates

and therefore the boundary is defined by a function r(j)
where j is in the interval [0, 2p]. Note that any arbitrary

shape considered in this way has a period of 2p (it may also

have other periods). The area of the shaded region is

(Fraleigh, 1990, pp. 588–589):

1

2

ðqCb

q

r2dj

so that the average of all such areas for varying q is:

1

2p

ð2p
0

1

2

ð
qCb

q

r2dj

� �
dq

which by the applying the above theorem is:

Z
b

2p

1

2

ð2p
0

r2dj

� �

where the part in square brackets is the total area of the

shape. In the case of three crystals (of equal area but not

necessarily the same shape) connected by a triangle the sum

of the subtended angles is p (from geometry) and therefore
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the average overlap area between all three crystals and the

triangle is half the area of a single crystal. A simple

modification can be applied in the case of crystals of

different areas.
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